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A simple model of a quantum clock is applied to the old and controversial problem of how long a
particle takes to tunnel through a quantum barrier. The model has the advantage of yielding sensible
results for energy eigenstates and does not require the use of time-dependent wave packets.
Although the treatment does not forbid superluminal tunneling velocities, there is no implication of
faster-than-light signaling because only the transit duration is measurable, not the absolute time of
transit. A comparison is given with the weak-measurement post-selection calculations of Steinberg.
© 2005 American Association of Physics Teachers.
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I. INTRODUCTION

Recent experiments on quantum tunneling have re-ign
the long-standing debate over how long a particle takes
tunnel through a barrier.1 Naive calculations suggest tha
faster-than-light tunneling is possible, while some expe
ments have superficially suggested that such a phenom
might have been observed.2 However, it has been argued th
information does not exceed the speed of light in these
periments, so that relativistic causality remains intact.3

The analysis of tunneling time is complicated becau
time plays an unusual and subtle role in quantum mechan
Unlike position, time is not usually treated as an opera
rather it is a parameter. Consequently, the energy–time
certainty principle does not enjoy the unassailable cen
position in quantum theory as does the position–momen
uncertainty principle. This uncertain status leads to ambi
ity when it comes to the measurement of the duration
tween quantum events.

The attempts to define the tunneling time have led to
extensive and confused literature.4 Most theoretical treat-
ments focus on the dispersive behavior of the wave packe
it traverses a square barrier. The interference between
parts of the wave packet reflected from the barrier and
part still approaching further complicates our understand

A simple heuristic argument to estimate the tunneling ti
goes as follows. To surmount a square barrier of heightV, a
particle with energyE must ‘‘borrow’’ an amount of energy
V2E. According to the uncertainty principle, this energ
must be ‘‘repaid’’ after a timeT51/(V2E) in units with
\51. This time provides a crude upper bound for the tunn
ing time. If the width of the barrier isa, then the effective
speed of the particle during the tunneling process must
ceeda(V2E). Becausea can be made as large as we plea
there is no upper bound on this effective velocity. In partic
lar, it may exceed the speed of light, in apparent violation
relativistic causality. Moreover, this expression has the f
ture that as the height of the potential hill is increased,
tunneling time decreases, that is, the more repulsive the
tential, the faster the particle moves in the forward directio

A natural way to approach the problem is to introduce
clock that is coupled to the particle, and to define the tunn
ing time in terms of the change in the clock variable from t
time that the particle reaches the barrier to the time
emerges. It is then possible to define the expectation time
the tunneling event in terms of the expectation value of
23 Am. J. Phys.73 ~1!, January 2005 http://aapt.org/a
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clock variable, which is a quantum observable. Several s
gestions for quantum clocks have appeared.5 In this paper I
restrict my attention to an early proposal for a quantum clo
by Salecker and Wigner,6 and later elaborated by Peres.7 I do
not claim that this model enjoys any elevated status o
other definitions and models for the tunneling time, althou
the results obtained are consistently plausible.

The clock consists of a rotor~or ‘‘hand’’ ! that begins in an
initial state with a well-defined pointer angle, and runs~‘‘the
hand ticks around the clock face’’! only when the particle
traverses the space between two points of interest, sayx1 ,
x2 . The clock’s Hamiltonian isP(x)vJ, whereP is a pro-
jection operator for the position of the particle in the interv
x1,x,x2 , J is the angular momentum of the clock roto
andv is the angular velocity. The time of flight for the pa
ticle to pass betweenx1 and x2 is thus interpreted as th
expectation value of the difference in the angular position
the clock hand, which is a normal quantum mechanical v
able. This quantity is calculated by determining the chang
phase of the particle’s wave function in traversing the int
val @x1 ,x2#, which, under the action of the Hamiltonian
translates linearly into an advance in the angular variable
the rotor~the details are in Ref. 7!.

To illustrate the method for a simple case, consider a f
particle of massm and energyE moving to the right in one
spatial dimension in a momentum eigenstateeikx. We first
calculate the phase differenced(E) in the wave function
between the two points, that is,d(E)5kD, where k
[(2mE)1/2 and D[x22x1 . We next replaceE by E1e,
wheree is the coupling energy between the particle and
clock, and assume that this coupling is a small perturba
on the particle’s motion:ueu!E. Next we expandd(E1e)
to first order ine. In Peres’ prescription, the timeT for the
particle to traverse the distanceD is given byd8(E) ~see Ref.
7!. In the present caseT5d8(E)5mD/(2mE)1/2. From the
definition of the classical velocityv5(2mE)1/2, the ex-
pected time of flightT is seen to be identical to the classic
result,T5D/v. Note that this physically reasonable result
obtained using an energy eigenstate, that is, a statio
state, with time dependenceeiEt. If the wave function were
more complicated, for example, a wave packet, the resul
expectation value for the change in the clock hand a
would be more complicated. For the simple energy eig
state, the clock measures only time differences between
events, not the absolute time of either event.
23jp © 2005 American Association of Physics Teachers
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The fact that the clock measures timedifferencesis a key
point. Suppose that we try to measure the tunneling time
first measuring the time at which the particle arrives at
leading edge of the potential hill, then measure the time
which it emerges on the other side, and take the differen
The act of observing the particle at the first position c
lapses the wave function to a position eigenstate and in
duces arbitrary uncertainty into the momentum, so that
second measurement is changed. If, on the other hand
forsake knowing the absolute time of passage of the part
but require only the time for the particle to pass between
fixed points in space, then only a single measuremen~a
measurement of the time difference! is required, and there is
no large unpredictable disturbance.

II. POTENTIAL STEP

As a less elementary example, consider a particle sca
ing from a potential step of heightV situated atx50. The
stationary state wave function has space-dependent par

eikx1Ae2 ikx ~x,0!,
~1!Be2px ~x.0!,

wherep5@2m(V2E)#1/2. The overall normalization facto
does not affect the result and will be omitted. Suppose
require the expectation value for the time of flight of t
particle to travel fromx52b to the barrier and back again
At x52b the phase of the incident portion of the wa
function is2kb. We use the continuity of the wave functio
and its first derivative at the step, solve forA, and find for the
reflected phase the valuekb1a, where

a5arctan~ Im A/ReA!, ~2!

and

A52~p1 ik !/~p2 ik !. ~3!

Thusd(E)52kb1a and we find by differentiating with re
spect toE that

T52b/v12m/kp52~b1d!/v, ~4!

where d[1/p is the expectation value for the penetrati
depth of the particle into the potential step.

Equation~4! has an intuitively simple interpretation. Th
term 2b/v is the time of flight fromx52b to the potential
step atx50 and back again, at the classical velocityv. The
term 2d/v represents the expectation value of the additio
duration of the particle in the classically forbidden regi
and can be interpreted as if the particle moves with the c
sical velocityv for a distanced equal to the average penetr
tion depth and back again. Thus the effective distance fr
x52b to the step is increased from the classical distancb
to b1d. Note that ifV→`, thend vanishes, so an infinite
potential step yields instantaneous reflection. On the o
hand, asE→V, p→0 and the time beneath the step d
verges; the particle takes an infinite time to bounce back

For E.V, p is imaginary,A is real, anda50. The round-
trip time therefore reduces to the classical result 2b/v. The
reflection from the step also is instantaneous in this ca
even whenE→V from above. There would thus appear to
an infinite discontinuity in the reflection time atE5V. How-
ever, we must be cautious. The method of calculation
mands that we expand functions ofE2e and V2E2e in
24 Am. J. Phys., Vol. 73, No. 1, January 2005
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powers ofe and treate as small. This procedure is clearl
untrustworthy near bothE50 and E5V. I shall return to
this problem later.

We also may calculate the time for the particle to go fro
x52b to x5b8.0 by examining the phase of the wav
function in the regionx.0 @the B-dependent term in Eq
~1!#. If E,V, the method suggests an imaginary phase s
2pb8, implying an imaginary time. IfE.V, we obtain
b/v1b8/v8, wherev85@2(E2V)/m#1/2 is the classical ve-
locity above the step. Evidently we may patch together
time of flight before the step with that at the reduced veloc
after the step.

III. POTENTIAL HILL

I now treat the case of principal interest: a particle th
tunnels through a square potential hill given byV
5constant.0 in the interval@0,a# and zero elsewhere. Th
wave function is

eikx1Ae2 ikx ~x,0!,

Bepx1Ce2px ~0,x,a!, ~5!

Deikx ~x.a!.

We use continuity of the wave function and its derivative
x50 andx5a, and find the phase change to be

d~E!5arctan$@p22k2!/2kp#tanh~pa!%. ~6!

If we differentiated(E) with respect toE, we find the ex-
pectation value of the tunneling time:

T52m$k~p22k2!a1@~p21k2!2/2kp#

3sinh 2pa%/@~p21k2!2 cosh2 pa2~p22k2!2#. ~7!

As a check, we note that whenV50, p5 ik and T5ma/k
5a/v as expected.

In the special caseE5V/2, the right-hand side of
Eq. ~7! reduces to tanh(ka)/E. For small a, it approaches
(ma/2k)(31p2/k2), which goes to zero asa→0, as ex-
pected. If we define the effective velocity of the particle to
veff[a/T, then for smalla

veff'2v/~21V/E!, ~8!

wherev is the classical velocity of the particle outside th
potential hill. Note thatveff,v in this limit: thin potential
hills slow the particle down, as occurs classically. ForE
5V/2, veff5v/2. For V@E, the limit used in Eq.~7! breaks
down. Of interest is a delta-function potential hill, whe
Va25constant asV→` and a→0. If we return to Eq.~7!
and apply these limits, we find thatT→0. There is no prob-
lem here about reflected waves slowing the particle a
approaches the barrier. This result is consistent with the w
of Aharonov, Erez, and Reznik,8 who find T50 for the tun-
neling time through an array of delta function potential hil

In contrast to the slowing effect, thick hills serve to spe
the particle up, that is,veff.v. If we take the limita→` in
Eq. ~7!, we see that the tunneling time approaches the c
stant value

2m/kp5@E~V2E!#21/2. ~9!

Equation ~9! is similar to the result found from the naiv
argument mentioned in Sec. I. The right-hand side of Eq.~9!
24P. C. W. Davies
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is reminiscent of the energy that can be ‘‘borrowed’’ for
time T according to Heisenberg’s uncertainty principle, b
with the interesting difference that the borrowing requi
ment is not simplyV2E, but the harmonic mean of thi
quantity andE. The tunneling time is minimized forE
5V/2, and in this caseT51/E. Note that Eq.~9! also is
equal to the second term on the right-hand side of Eq.~4!,
the sojourn time inside a potential step. We shall see that
equality is a special limit of the general result that the exp
tation time for a particle to reflect back from the potent
barrier is the same as the expectation time for it to penet
the barrier.

The effective velocity under the barrier is

veff5aE1/2~V2E!1/2, ~10!

which increases without limit asa→`. In particular,veff
exceeds the speed of lightc when

pa.2mc/k

52~de Broglie wavelength!/~Compton wavelength!.

~11!

However, for thick barriers the transmission probability
very small. To estimate it, first note that if the approach
particle is to remain nonrelativistic~as assumed in the trea
ment given here!, then the right-hand side of Eq.~11! must
be much greater than unity, which implies thatpa@1. In this
limit the transmission probability reduces to

16~E/V2!~V2E!e22pa. ~12!

Consider, for example, the caseE5V/25mc2/8. If we
takepa52mc/k ~corresponding to the onset of superlumin
propagation!, the barrier penetration probability is the
4e28'1023. Although small, this probability is by no
means negligible, and we have to confront the conseque
for causality if it is indeed the case that the occasional p
ticle can tunnel faster than light.

A violation of causality would arise if observer A coul
send information to an observer B a distanced away, such
that it arrives before a timed/c has elapsed. Could A use a
electron to encode this information, and arrange for it
tunnel through a barrier to B in the knowledge that, alb
only occasionally, B will receive the electron before a tim
d/c? To achieve physical causality violation, A must be a
to determine the moment of transmission of the informati
But as we have seen, the model discussed here can dete
only the time difference between the moment of ‘‘transm
sion’’ and ‘‘reception’’ of the particle—not the absolute tim
of transmission. Ifd/c2T5Dt, then to be causally relevan
the signaling process must be controlled to an accuracy
than Dt; however, this control is not possible in the mod
using energy eigenstates. Any faster than light propaga
would therefore be fortuitous—entirely random and unco
trollable. Tunneling may violate the spirit of relativity, but
does not violate the letter.

A more systematic treatment of this issue would be wor
while, extending the analysis to more complicated sta
such as wave packets and other superpositions. The for
ing calculation is a poor guide to a more ambitious calcu
tion, because the sum of the phases of the components
wave function is generally different from the phase of t
sum. We cannot therefore superpose the transit time re
of energy eigenstates to obtain the results for a wave pac
25 Am. J. Phys., Vol. 73, No. 1, January 2005
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A related open question is the relation between the pre
quantum tunneling time analysis and the apparently supe
minal propagation of wave pulses reported in classical
tics, mentioned briefly in Sec. I.2 Under certain exotic con-
ditions, it can appear as if a pulse of light exits a mediu
ahead of the light-travel time from the point of entry. A car
ful analysis, however, reveals that this phenomenon can
be used to transmit information faster than light.3 The ap-
pearance of superluminality can be traced to a change in
shape of the pulse. It would be interesting to apply the Pe
clock analysis to such a scenario.

IV. MEASUREMENT UNCERTAINTY

The model clock used here is a quantum system, an
therefore subject to quantum uncertainty in its operati
which in turn implies an uncertainty in the calculated tunn
ing time. As shown by Peres,7 the back action of the clock’s
dynamics on the particle’s motion, which persists through
the experiment, will limit the resolution of the model cloc
In particular, it is unreliable whenE→0 or E→V.

The resolution of the clock is limited by the assumpti
that uEu and uV2Eu are @e. The energy–time uncertaint
relation applied to the clock variables then suggests that
clock pointer will have an uncertainty corresponding to
time t'1/e@1/E. But the tunneling time as illustrated b
the asymptotic value in Eq.~9! is itself of order 1/E. Hence
the quantum uncertainty in measuring the tunneling timeT is
at least the same order as the expectation value of the
neling time. This result is no surprise, because any limitat
in the measurement resolution will have this general form
dimensional grounds.

The disturbance on the particle’s motion caused by
back action can be reduced by making the coupling wea
but at the expense of introducing greater uncertainty in
measurement of the clock reading. An alternative strategy
reducing the uncertainty is to use a clock that is not conti
ously coupled to the particle. One way to achieve suc
reduction would be to place the clock in a metastable st
and then using the arrival of the particle at the leading e
of the barrier to merely trigger the operation of the clock v
a momentary interaction. This sort of device has been stud
by Oppenheim, Reznik, and Unruh.9 Surprisingly, it does not
result in a reduction in the overall uncertainty. The reason
that the sharply localized potential associated with the t
gering device reflects some of the wave function, and
tempts to mitigate this back-action effect~for example, by
boosting the energy of the particle just before the barr!
serves only to introduce additional uncertainties.

Thus there seems to be an irreducible uncertainty in
measurement of the tunneling time that is comparable to
tunneling time itself. At first sight this uncertainty appears
cast doubt on the usefulness of the foregoing results. H
ever, as shown by Aharonovet al.,10 by performing measure
ments on a large ensemble of identical systems, the sprea
results can be drastically narrowed, even in cases where
uncertainty for a single measurement exceeds the expe
value. Their analysis is known as the theory of weak m
surement. If we apply weak measurement theory to the pr
lem of the Peres clock and tunneling time, the implication
that, interpreted as an average over a large ensemble
results of the foregoing sections are physically meaningfu
spite of the intrinsic uncertainty in the operation of the cloc
25P. C. W. Davies
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Weak measurement theory often is combined with po
selection, whereby a final sub-ensemble is extracted co
sponding to the state of interest. In the case of tunneling,
sub-ensemble will include only those particles that penet
the barrier and move to the right. Steinberg11 has calculated
the tunneling time using this approach and has evaluate
expectation value for a projection operator corresponding
the time the particle is inside the barrier in the limit that t
measuring device interacts weakly with the particle. The
sulting expression is complex. Its real part corresponds to
expectation value of the tunneling time; the imaginary p
corresponds to the back action of the measuring device
the particle. These respective parts are related in a trans
ent manner to other proposed definitions of the tunne
time. For example, the real part is identical to the dw
time,12 which is defined as the probability of finding th
particle inside the barrier divided by the incoming flux.

Steinberg’s result for the tunneling time expectation va
is11

Ts52m$k~p22k2!a1@k~p21k2!/2p#

3sinh 2pa%/@~p21k2!2 cosh2 pa2~p22k2!2#,

~13!

which should be compared to Eq.~7!. The two durations are
very similar, but not identical. We find

T/Ts5V/E1~12V/E!/@11~V sinh 2pa!/2

3~V22E!pa#. ~14!

In the free-particle limitV→0, T→Ts . In generalTs,T for
E,V. In the limit of large barrier widtha,

Ts→~E/V!T5~E/V!@E~E2V!#1/2. ~15!

Note that bothT andTs diverge asE→V, but the behavior in
the limit E→0 is very different, that is,T→`, andTs→0.
The latter result implies that, as the approach velocity of
particle decreases, the tunneling velocity increases; in
limit v→0, the post-selected tunneling velocity diverges.

V. OTHER RESULTS

We may use the Peres clock model to calculate other t
sit times of interest. Consider, for example, the time betw
incidence and reflection from the leading face of the hill
x50. This time may be calculated by examining the phase
A in Eq. ~5!. We find for the phase change

d~E!5arccot$@p22k2!/2kp#tanh~pa!%. ~16!

But the derivative of Eq.~16! is identical to that of Eq.~6!,
so the sojourn time inside the hill is the same, whether
particles are transmitted or reflected.

Thus the tunneling times for both transmission and refl
tion are the same. It has been argued4 that the tunneling times
for transmission and reflection should satisfy the relation

TD5PtTt1PrTr , ~17!

whereTD is the dwell time,Pt(Pr) the probability of trans-
mission~reflection!, andTt(Tr) the corresponding tunnelin
times. Equation~17! is satisfied, for example, by Steinberg
definition, but not by the one used in this paper. Howev
Landauer and Martin1 have argued strongly against Eq.~17!
as an appropriate criterion.
26 Am. J. Phys., Vol. 73, No. 1, January 2005
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Our analysis also may be used to derive results for o
dimensional scattering, by puttingE.V. If we define b
[@2m(E2V)#1/2, Eq. ~7! becomes

T52m$k~k21b2!a1@~k22b2!2/2kb#

3sin 2ba%/@~k22b2!2 cos2 ba2~k21b2!2#. ~18!

For small a the right-hand side of Eq.~18! reduces
to (ma/2k)(32b2/k2) with a corresponding effective veloc
ity given by Eq. ~8!. Again, veff,v, although veff

.@2m(E2V)#1/2, the classical velocity over the barrier. S
although the repulsive potential slows the particle, it does
do so as much as in the classical case.

Now consider the opposite limit of largea. The denomi-
nator on the right-hand side of Eq.~18! can never vanish, and
the sine function in the numerator is bounded by@21,1#.
Thus

T'2mka/~k21b2!5ka/~2E2V!. ~19!

In contrast to the result for the tunneling case, the right-ha
side of Eq.~19! is proportional toa even for largea. The
effective velocity (2E2V)/k therefore always remains les
thanc when the particle passes over the barrier: only tunn
ing events lead to apparent superluminal velocities. For la
E, veff→v, but for particles that just clear the barrier,E
'V, veff'v/2.

Of special interest is the case of resonance transmiss
whenba5np, andPt51. Then Eq.~18! simplifies to

T5ma~k21b2!/2kb2, ~20!

veff5v~E2V!/~E2V/2!. ~21!

In this caseveff approaches 0 asE→V, as it would classi-
cally. The effective velocity, however, has a very differe
energy dependence from the classical expression. For
case of anti-resonance, where cos(ba)50, Eq. ~19! becomes
exact, and

veff5~v1v8!/2, ~22!

which is the average of the classical velocities outside
over the barrier.

Note that because the reflection and transmission expe
tion times are equal, there is always a reflection delay,
sojourn in the regionx.0, even in the case thatE.V. This
behavior is in contrast to the single potential step, wh
reflection is instantaneous ifE.V. The difference has a
natural interpretation. For the potential hill, reflection c
take place from both the leading and remote faces of the
The actual reflections may be instantaneous, but if the
ticle reflects from the far edgex5a, there will be a delay
due to the travel time across the top of the hill. The exp
tation value will therefore include this delay, and the resul
consistent with one half the flux being reflected from ea
edge.

VI. CONCLUSION AND SUGGESTIONS FOR
FURTHER WORK

I have shown by use of a simple model of a quantum clo
that sensible and consistent expressions may be derived
the expectation value of the time for a nonrelativistic parti
in an energy and momentum eigenstate to pass between
points, as long as the absolute time of passage is not
quired. The points may be separated by regions that incl
26P. C. W. Davies
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a variety of potentials, including a square potential barrier
the latter case the tunneling time is given by an express
that approaches a constant for thick barriers, implying
issue concerning superluminal propagation. However, I h
argued that physical causality is not violated.

The discussion has been restricted to simple square b
ers. It would of interest to consider other types of barrie
The present results may readily be extended to a pote
well by puttingV,0 in the foregoing treatment, and exam
ined for resonant scattering, which occurs when there
bound energy level just below the top of the well. An intrig
ing problem is the case of a double square barrier separ
by a gap. There have been claims that the traversal tim
independent of the gap between the barriers, implying su
luminal propagation.13 A calculation of the Peres clock tim
for this problem would be straightforward and illuminatin

The present technique for calculating traversal times n
not be limited to square barriers, although exactly solva
cases are difficult to find. A good example for a stude
project is the potentialV(x)5(1/2)V0@11tanh(ax)#, where
V0 anda are constants. The results should reduce to thos
the potential step given in Sec. II whena→`. Another im-
portant example is the uniform gravitational potentialV(x)
5mgx, which I have discussed in detail elsewhere.14
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ACTION AT A DISTANCE

But the mechanical philosophy already has rules, and Newton was flouting one of them in
spectacular fashion. Physical causes were supposed to be direct: matter striking or pressing on
matter, not emitting invisible forces to act from afar. Action at a distance, across the void, smacked
of magic. Occult explanations were supposed to be forbidden. In eliminating Descartes’s vortices
he had pulled away a much-needed crutch. He had nothing mechanical to offer instead.

James Gleick,Isaac Newton~Vintage Books, 2003!, p. 139.
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